
 

Copilot Studio Reference Sheet 
Purpose 

This reference provides a practical view of how Copilot Studio fits into Park Place’s broader 
agentic architecture. It is intended to help builders design agents that are reliable, 
maintainable, and easy to extend over time. 

Copilot Studio works best as an orchestration layer. It coordinates conversations, triggers 
actions, and routes work, but it should not be treated as a rules engine or a place to embed 
complex business logic. 

 

Copilot Studio’s Role in the Architecture 

Copilot Studio is responsible for: 

• Conversational flow and intent handling 

• Triggering downstream actions 

• Routing work across systems 

• Managing lightweight conversational context 

Copilot Studio is not responsible for: 

• Enforcing complex business rules 

• Securing secrets or credentials 

• Executing long-running or stateful logic 

• Acting as a system of record 

When logic becomes complex or security-sensitive, responsibility should move 
downstream. 

 

 

 

 

 



 
Core Building Blocks 

• Topics – Entry points and flow control for agent behavior 

• Entities – Structured data extracted from conversations 

• Actions – Calls to Power Automate, Azure Functions, or APIs 

• Memory – Short-term context for continuity, not long-term storage 

• Triggers – Events from Dynamics, Dataverse, email, queues, or workflows 

 

Common Architecture Patterns 

• Inbox triage with human approval 

• CRM-triggered follow-up agents 

• Multi-step workflows coordinated across Power Automate and Azure Functions 

• Multi-agent handoffs where Copilot coordinates and downstream services execute 

 

Common Failure Patterns 

• Excessive logic embedded in prompts 

• Missing or poorly defined triggers 

• Overuse of memory for data storage 

• No escalation or approval path 

• Limited logging and traceability 

 

Design Guidelines 

• Keep topics small and composable 

• Validate inputs early 

• Fail visibly and log decisions 

• Design escalation before automation 

• Treat Copilot Studio as a coordinator, not an executor 



 
Prompt Engineering for Devs Guide 
Purpose 

This guide provides practical guidance for designing prompts that behave predictably, 
scale safely, and remain understandable as agentic systems evolve. 

Prompts should be treated as system components with clear intent and boundaries, not as 
creative experiments. 

 

Prompts as System Interfaces 

A prompt defines: 

• The role the agent is playing 

• The scope of responsibility 

• The expected output format 

• The conditions for escalation or failure 

Ambiguity at the prompt level propagates downstream. 

 

Core Design Principles 

• Define roles and goals explicitly 

• Constrain scope and expected outputs 

• Separate reasoning from execution 

• Design for failure, not perfection 

• Prefer deterministic outputs where possible 

 

Techniques That Matter in Production 

• Prompt chaining to reduce complexity 

• Context injection over excessive memory use 

• Structured outputs (JSON, tables) 

• Confidence scoring or uncertainty flags 



 
Managing Hallucinations 

• Require assumptions to be stated 

• Ask for sources or reasoning summaries 

• Cross-check with tools or APIs 

• Escalate when confidence thresholds are not met 

 

Token and Cost Awareness 

• Remove redundant context 

• Reference data instead of copying it 

• Split large prompts into stages 

• Design for predictable response length 

 

Developer Guidance 

Reliable prompts reduce operational risk, improve trust, and control cost. Prompt quality 
directly affects system stability. 

 

 

 

 

 

 

 

 

 

 

 



 
Azure Function Snippets 

Purpose 

This reference outlines common patterns for extending agents with server-side logic using 
Azure Functions. It is intended to standardize how execution, security, and integration are 
handled across agentic solutions. 

 

When to Use Azure Functions 

Azure Functions are appropriate when: 

• Business logic is complex or conditional 

• Secure access to systems is required 

• Data enrichment or validation is needed 

• Workflows are long-running or asynchronous 

• Auditability and observability are required 

Logic that affects data integrity or compliance should not live in prompts. 

 

Common Function Patterns 

• HTTP-triggered functions for agent calls 

• Queue-triggered functions for asynchronous processing 

• Durable Functions for multi-step orchestration 

 

Security and Governance Defaults 

• Use managed identities 

• Store secrets in Azure Key Vault 

• Validate inputs rigorously 

• Redact sensitive data before LLM interaction 

 

 



 
 

Operational Considerations 

• Monitor latency and failures 

• Implement retries and timeouts 

• Log inputs and outputs responsibly 

• Control execution costs 

 

Developer Guidance 

Functions provide agents with controlled execution, security, and enterprise-grade 
reliability. They are a key part of scaling agentic systems responsibly. 

 


	Copilot Studio Reference Sheet
	Prompt Engineering for Devs Guide

