Building Agentic Systems with Copilot Studio

Session 2 - Audience Handout

The Core Principle

Al is excellent at understanding intent and generating natural language. Code is excellent at making decisions. Use each tool for
what it's best at.

Copilot Studio ORCHESTRATION
e Manages conversation
e Extracts info e Routes requests

I
|
| « Understands user
|
| e Formats response
L

1

EXECUTION

e Applies business rules

Azure Function
e Validates input
e Retrieves data e Logs decisions

e Applies logic

1

SYSTEM OF RECORD

1

Data Storage |
e Secure | e Auditable

|

e Scalable

Why This Architecture?

Embedding Logic in Prompts Using Azure Functions
Non-deterministic (varies each time) Deterministic (same input = same output)
Prone to hallucination Returns only real data
No audit trail Full logging & traceability
Hits token limits at scale Scales to millions of records
Hard to test Unit testable
Prompt injection vulnerable Secure by design

Demo Test URLs

Test the Azure Function directly:



https://func-orderstatus-demo.azurewebsites.net/api/GetOrderStatus?code=-
Rk7cIVaiBBG20hnYxqdOdZwN4D8fPFSyC7NxApfvTu@AzFuljovfw==&orderId=0RD-1003

Test Orders:
Order ID Expected Result
ORD-1003 Delayed order with 10% discount

ORD-9999 "Order not found" error

1001 “Invalid format" error

Copilot Studio Building Blocks

Component Purpose

Topics Entry points and flow control

Entities Extract structured data from conversation
Actions Call Power Automate, Azure Functions, APIs
Memory Short-term context (not for data storage)
Triggers Events from Dynamics, Dataverse, email, queues

When to Use Azure Functions
Use Azure Functions when:

e Business logic is complex or conditional
e Secure access to systems is required

¢ Data validation is needed

e Auditability and compliance matter

e Workflows are long-running or async

Rule of thumb: If a decision affects money, compliance, or data integrity — use code, not prompts.

Common Patterns

Multi-Agent Handoffs

Copilot Studio coordinates specialized downstream agents (Orders, Returns, Support) - each handles its domain.

Async Processing

For long-running tasks: send to Azure Queue — process in background — notify when complete.

Durable Functions

Multi-step workflows with checkpoints that survive failures. Retry from last checkpoint, not the beginning.

Escalation Paths

Never fully automate decisions requiring human judgment. Create approval requests and pause until approved.



Production Readiness Checklist

Security
. Use managed identities (not connection strings)
. Store secrets in Azure Key Vault
o Validate all inputs in functions
. Redact Pll before sending to LLM

Cost Management

o Reference data via APIs (don't copy into prompts)

o Remove redundant context

o Monitor token usage with alerts
Observability

. Log inputs/outputs (with redaction)

. Monitor latency and error rates

o Use correlation IDs for tracing
Resilience

o Implement retries with backoff

o Set appropriate timeouts

o Design graceful degradation
Key Takeaways

1. Copilot Studio = Orchestrator, not a rules engine
2. Prompts suggest, code decides

3. Deterministic behavior requires code, not Al

4. Audit trails come from functions, not conversations
5. Scale requires data APIs, not hardcoded prompts

6. Security means validation in code, not instructions in prompts

Common Questions

Q: Why not just use Al for everything? A: Al excels at understanding language and conversation. Code excels at precise decisions. Use each for

its strengths.

Q: Isn't this more complex? A: Initially, yes. But it's more maintainable, auditable, secure, and reliable. Complexity in the right place beats

fragility everywhere.
Q: What about latency? A: Azure Functions in the same region add <100ms. Worth it for deterministic behavior and auditability.

Q: Can agents call other agents? A: Yes - multi-agent handoffs. Copilot coordinates, specialized agents execute.

Resources

e Copilot Studio: copilotstudio.microsoft.com
e Azure Functions: portal.azure.com
¢ Power Automate: make.powerautomate.com



Contact

Questions about implementing these patterns? Reach out to your session presenter or the Park Place Technologies team.

Session 2: Building Agentic Systems - Park Place Technologies



